Contact Dynamics Formulation Using Minimal
Coordinates

Abhinandan Jain

Abstract In recent years, complementarity techniques have beenopea for
solving non-smooth multibody dynamics involving contaadl @ollision events. The
linear complementarity approach sets up a linear complerignproblem (LCP)
using non-minimal coordinates for the unilateral contawistraints and inter-link
bilateral constraints on the system. In this paper, we dgvalcomplementarity for-
mulation that uses minimal coordinates. This results in ammamaller LCP whose
size is independent of the number of bodies and the numbegoéds of freedomin
the system. Furthermore, we exploit operational spacedier algorithms to over-
come key computational bottlenecks to obtain over an orfleragnitude speed up
in the solution procedure.
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1 Introduction

For more than a decade, researchers have been developipdecoentarity based
approaches for formulating and solving the equations ofonatf multibody sys-
tems with contact and collision dynami(B l[__ll—3]. Exampleswth dynamics for
robotic systems include manipulation and grasping taskk as illustrated in Fig-
ure[d, and legged locomotion. The complementarity appraactels bodies as
rigid, and uses impulsive dynamics to handle non-smootlisgmt and contact in-
teractions. Complementarity methods impulsively “stegémonon-smooth events
and thus avoid small integration step sizes encounterdd pehalty based meth-
ods that model surface compliance during contdct [4]. Ia gaiper, we focus on a
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minimal coordinate formulation of the com-
plementarity approach for contact and colli-
sion dynamics for multi-link systems. This
paper builds upon the operational space for-
mulation for contact and collision dynamics
described in reference! [5] and adopts the lin-
ear complementarity based physics models
from [2,[3].

Generally, the complementarity based so-
lution consists of a combination of: (a) set-
ting up alinear complementarity problem
(LCP) problem; (b) numerically solving theFig- 1 An example multi-arm robot ma-
LCP; and (c) ancillary dynamics computaliPulation task involving unmounting a
. . . wheel from a hub involving several contact
tions. The LCP takes into account the linkyq cojiision dynamics interaction events.
mass and inertia properties, contact friction
parameters, inter-link bilateral constraints and condact collision unilateral con-
straints. The LCP solution identi es the unilateral coasits that are active, and
solves for the impulsive forces and velocity changes thratansistent with the con-
straints on the system. Variants of the complementarityagah to handle elastic
and inelastic collisions have also been deveIoEbd [3]. W@ formulations use
discretized approximations for the friction cones, ottesearchers have explored
non-linear cone complementarity approaches that avoid approximations 6.,/ 7].

The typical approach to handling contact and collision dyiea is to work with
non-minimal coordinates, since the LCP is simpler to set3}pHor a multi-link
system withn links, the LCP involves B non-minimal coordinates, together with
the bilateral constraints associated with the inter-limgls in this approach. The
mass matrix is block diagonal and constant. However, the di@fension is large
and computationally expensive to solve. In addition, tHfes@ulations require ad-
ditional measures for managing error drift in the bilate@hstraints when propa-
gating the system dynamics state.

An alternative approach is to use minimal hinge coordinﬁ}aﬂNhiIe the under-
lying physics remains unchanged, due to the much smallebeuwf generalized
coordinates, the size of the dynamics model is much smalea consequence the
size of the LCP problem is reduced. Also, the bilateral aaists for the inter-
link hinges are eliminated along with the need to manage tiweistraint violation
errors. However, the use of minimal coordinates does leat¢tse and con gura-
tion dependent mass matrices. Thus while minimal coordsigad to smaller LCP
problems, they also signi cantly increase the dif culty dicomputational cost of
setting up the LCP. This has been a signi cant hurdle in theeafaninimal coordi-
nate approaches.

In this papeﬂ we explore a progression of minimal coordinate formuladitimat
partition the overall solution effort in different ways beaten setting up the LCP,
and solving it. Our goal is to reduce the overall computati@ost by (a) taking ad-

1 This research on minimal coordinate contact dynamics has alsorbperted in a recent confer-
ence papet[9].
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vantage of the smaller dimension of minimal coordinate ngamd (b) exploiting
the host of structure based, and low-order dynamics alguostthat are available
for minimal coordinate dynamics models. Notable exampfesich structure based
algorithms include the composite rigid body algorithms éomputing the mass
matrix [10], the articulated body inertia forward dynamadgorithm [11] and the
spatial operator based operational space dynamics dgo[i2].

The main contribution of this paper is in the developmentodperational space
basedOS formulation that uses minimal coordinates for the contact and coflisio
dynamics problem, together with low-order spatial oparalgorithms to reduce
the cost of setting up the LCP. This results in a more than derasf magnitude
reduction in computational cost. The size of the resulti@PLproblem is indepen-
dent of the number of links and generalized coordinates,cautyldepends on the
number of contact nodes. We also describe extensions obtheufation to handle
elastic and inelastic collision dynamics. The formulatisrdeveloped in progres-
sive steps to clarify the trade offs and relationships antbegmethods. We use a
multi-link pendulum numerical problem to quantitativel\easure the performance
improvements from the new OS formulation. A dual-arm robystem is used as a
reference system to compare the LCP sizes for the diffecentlations discussed
in this article.

The organization of this paper is as follows. Secfidn 2 deesrthe comple-
mentarity conditions associated with modeling a singléati@ial contact constraint.
Sectior B describes a system-level, multiple contbidtC LCP formulationbased
on non-minimal coordinates. This formulation is easy tougetbut leads to a large
LCP. Sectioi ¥ develops an alternatMe formulationthat uses minimal coordi-
nates. The reduction in the size of the LCP is however accamap@dy an increase
in the cost of setting up the LCP. Sectidn 5 uses the MC LCP titation to de-
velop theRMC formulationthat further reduces the size of the LCP problem, but
once again at the cost of a further increase in the LCP setsip $ectiofib nally
develops th@Sformulation that is based on an operational space apprdtblie
this LCP's size is moderately larger than the RMC LCP, it ikedb use low-order
operational space algorithms to signi cantly reduce thePL€&tup cost. Sectidn 7
extends the OS formulation contact dynamics model to irekldstic and inelastic
collision dynamics. Sectio 8 focuses on computationaldssand describes the
operational space computational algorithms to reducedbeaf setting up the OS
LCP problem. The section also presents numerical simuaésults to quantify the
performance improvements for the OS formulation.

2 Unilateral contact constraints

Unilateral constraints are de ned by inequality relatibips of the form

d( ,t)>0 (1)
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for some functiord of the con guration coordinates and timet. As an example,
the non-penetration condition for rigid bodies can be statean inequality relation-
ship requiring that the distance between the surfacesidflrgdies be non-negative.
d( ,t) is generally referred to as thiistanceor gapfunction.

Contact occurs at the constraint boundary, i.e., wient) = 0. For bodies
in contact, the surface normals at the contact point arellparéhe existence of
contact is typically determined using geometric or cadlisdetection techniques.
For a pair of bodie#\ andB in contact, we use a convention where iffe contact
normalfi(i) is de ned as pointing from bodf towards bodyA, so that motion
of A in the direction of the normal leads to a separation of thadsod\ unilateral
constraint is said to be in activestate when

d( ,t)=d(,t)=d(,t)=0 )

Thus, a unilateral constraint is active when there is canéaxd the contact persists.
Only active constraints generate constraint forces onytbiesn. A constraint that is
not active is said to bmactive Contactseparationoccurs when the relative linear
velocity of the contact points along the normal becomestpesand the contact
points drift apart. A separating constraint is in the precetlosing contact and
transitioning to an inactive state. At the start of a sepanatvent, we have

d( ,t)=d(,t)=0 and d( ,t)> 0 3)

2.1 Contact impulse for an active contact constraint

We now describe contact force modeling using the ap-
proach in referenceg[ﬂ 3]. The 6-dimensional spatiai
impulse at thei™ active contact constraint node has _
a zero angular moment component. Its non-zero linear,
impulse componenk, (i) 2 R 2 can be decomposed //

into normal and tangential (friction impulse) compg:

nents

olyhedral  girection
pproximatiofaciors

Fu(i) = Fa (DA + R()E() (4)

wherei(i) denotes a tangent plane vector for iffe

contact pair. Assuming that the friction coef cient issg. 2 polyhedral approxi-
(i), the magnitude of the tangential Coulomb frictionahation of the friction cone.

impulse is bounded by the magnitude of the normal

component as follows:

kR ()k6  (I)Fa (i) ()

When the bodies have non-zero relative linear velocitiehi@tcontact point, the
contact is said to be sliding contact. Otherwise, when the relative linear veloc-
ity is zero, the contact is said to bedalling contact. During sliding, the tangential
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frictional impulse is in a direction opposing the linearaty vector (which neces-
sarily lies in the contact tangent plane) and [Hqg. 5 holds waitlequality. Thus, the
tangential friction impulse is on the boundary of the coneee by Eq.[3 when
sliding, and in the interior of the cone when rolling.

For the purpose of numerical computation, the friction cahéhei™ contact
is approximated by a friction polyhedron consisting of atenhumbern;, of unit
direction vectorsﬁlj (i) in the tangent plane (see Figlire]2.1). It is assumed that for
each direction vector, its opposite direction vector i® atsthe set. For notational
simplicity, we assume that; is the same across all contact points. Thecontact
tangential frictional impulse is expressed as the lineartmioation of these direction
vectors as follows:

R X R
R@)t() = i(i)dj(i)= D(i) (i) (6)
i=1
where
D(i) 2 al(i), ,anf(i) 2R3 " and (i) L colf j(i)Q“;lZR”f

Combining Eq[# and Ef] 6 we have
" e
Fn (I) 2 R ng+1
(i) 7)

and D(i) e’ A@), D@G) 2R3 M1+

Fo(i)= D) (i), where (i) %

During sliding, the (i) component is non-zero and equal tG)F, (i) for just the
single directiorj that corresponds to the closest direction opposing theétatial)
relative linear velocity. In other words, with(i) denoting the magnitude of the
contact relative linear velocity,

()R (i) w=j; if (i)>0

W= it ()=0

(8)

In the above, [«cong> ] denotes the indicator function whose value is 1 if the con-
dition is true, and O otherwise.

2.2 Complementarity relationship for a unilateral contact

We begin by de ning complementarity conditions. lféz) 2 R" denote a function
of a vectorz 2 R", whosez; elements have lower and upper boumhdsnd u;
respectively. Theeomplementarity conditigrf(z) ? z, is said to hold when the
following properties apply:
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fi(z)> 0 when z =1
fi(z26 0 when z = u;
fi(Z):O when |; <z <uj

Typically the bounds arg = 0 andu; = 1 , and we will assume this to be the
case unless otherwise stated. For these bounds, the eteaié(®t) andz are non-
negative, and the complementarity condition requires fbiagny i, only one of
fi orz can be positive. A complementarity condition iirear complementarity
conditionwhenf(z) has the formMz+ q ? zfor some matrixM and vectom.
Thus for an LCP

Mz+q ? z 9

We have anixed complementarity conditiamhen one or more of the rows 6fz)
are exactly equal to zero, i.e. the bounds for one or moreeofdivs ard; =- 1
andu; = 1 . Such identically zero rows represent equality conditiohge the rest
represent are complementarity (inequality) conditions.

The sliding/rolling contact relationships described aboan be rephrased as the
following complementarity conditiods

A @)v, () 2 Fa() (separation) (10a)
(E@G)+ D (i)v (i) ? ) (friction force direction) (10b)
R @G)- E@O) () ? (1) (friction force magnitude)  (10c)

where
E(i) £ colfig!, 2R " (11)

andv; (i) 2 R % denotes the relative linear velocity of the contact nodehen fist
body A with respect to the contact node on the second B®dyhe component
of this relative linear velocity along the contact normalfis(i)v;, (i). A positive
value implies increasing separation between the bodie#e wmegative value in-
dicates that the bodies are approaching each othef. Eljtdi@a that this velocity
component and the normal interaction imputséi) cannot both be simultaneously
positive. Thus the interaction impulse must be zero wherbttkes are separating,
and the impulse can be non-zero only if we have sustainedcbriEq[I0b implies
that the tangential friction impulse opposes the tangkerndiative linear velocity,
while Eq.[1I0t states that the magnitude of the tangentialiisgpis on the friction
cone boundary when the the tangential relative linear Wgié&non-zero.

The complementarity conditions in Hg.]10 enforce the nariptnetration con-
straint at the velocity level instead of at the gap level. ¢tetiey are valid only when
the gap is zero, i.e., when contact exists [3]. Using[Eq. 7[M8ccan be expressed
more compactly as

E() ()+D (i@ 2 ()
EG) () ? (i)

2 For a vector/matriXA , theA  notation denotes its vector/matrix transpose.

(12)
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where " #

EG) EO' oR(i+Y
() (13)
and E(i) = [ (i), - E(i)]2R* ("*D

With n, denoting the number of unilateral contact nodes, the coepdevel com-
plementarity conditions in EG.L2 can be aggregated actidbg@ontact constraints
and expressed at the system level as:

1>

E+Dv, » _ and E ? (14)
where
% col (i) o2 RN
£ ocolf (iyde, 2 R™
D £ diagiD(i)dy, 2 R nu(ni+d a5
E L diag E() [*, 2 RMMrD ny
E 2 diag E(i) Y, 2 R" Me(m+D
vi % ocol Vi) MY, 2 R
Also, Eq[T can be restated at the system level as
F. =D where F £ colfR, (i)d's, 2 R 3" (16)

3 Non-minimal coordinates (NMC) LCP formulation

In this section we derive the commonly used non-
minimal coordinate LCP formulation for contact
dynamics based on the approachﬁh [3]. We refer,
to this formulation as theon-minimal coordinates
(NMC) formulation.

Contact and collision dynamics models build - .
upon smooth dynamics models. The smooth dy- biateral
namics model used by the NMC method treats all “""""7
the links in the system as independent bodies, and
all coupling hinges as explicit bilateral constraints
as illustrated in FigurEl3. Such a smooth dynarfig. 3 Fully augmented model with
ics model utilizes non-minimal coordinates and {&nges modeled as constraints.
also referred to asfally augmented (FAnodel [13].

Letn denote the number of links in the system, &hthe number of system de-
grees of freedom in the absence of bilateral constraintstieoFA modelN = 6n.
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Let n, denote the dimension of the bilateral constraints arisiognfinter-link
hinges and loop closure constraints on the system. Witdenoting the vector of
positional and attitude coordinates for the links, e R % denote the stacked
vector of spatial velocities of all the links. Then therestgiaGy, (x,t) 2 R"v &
matrix and aU(t) 2 R " vector that de nes the following velocity domain con-
straint equation for the bilateral constraints on the gyste

Gp (X, 1)V = U(t) a7)

We assume thdby, (X, t) is afull-rank matrix. Observe that EQ.1L7 is linear YA
The bilateral constraints effectively reduce the independlegrees of freedom for
the system fronN to (N - ny). The bilateral constraints are accounted for via
Lagrange multipliers 2 R " to yield the following smooth equations of motion
for the system

M - Gy(x,t) = C(x,V)

G (x, 1)V = U(t) (18)

where 2 R® denotes the spatial acceleration of the bodi¢s2 R 6" is a
block diagonal matrix with the 6 6 spatial inertias of each of the links along the
diagonalC 2 R 6" is a vector of the velocity dependent Coriolis and exteroalds
on the system. The G, (x,t) term in the rst equation represents the constraint
forces from the bilateral constraints. Differentiating tBg[IT constraint equation,
Eq.[I8 can be rearranged into the following descriptor form:
"H# " H#
M Gy = % where U 2 U- GpV 2R (19)

G, O

An attractive feature of these smooth equations of motichas theM matrix is
block diagonal and constant. Using the following discrateetEuler step approxi-
mation over a ; time intervaE

Vi-V = . and pp = (2R" (20)

the differential form of the equations of motion in Eq] 19 d@ntransformed into
the following discretized version that maps thg impulse stacked vector at the
bilateral constraint nodes into the resulting change irylxphtial velocities.
" . # " #
M -G, V-V _ C, 21)
G, O Pb U ¢

3 The- and+ superscripts denote the respective value of a quantity justéefod after the
application of an impulse.



Contact Dynamics Formulation Using Minimal Coordinates 9

3.1 Including contact impulses

The stacked vector of relative linear velocities acrossctirgact nodes is denoted
vy 2 R3¢ Itis related to the stacked vector of body spatial velesiM via the
following relationship

vy = GV (22)

where theG, 2 R3"« 6" matrix contains one block-row per contact node-pair,
with each row mapping the spatial velocities for a node pao the relative linear
velocity across the contact. Tl&, matrix also relates thE, equal and opposite
impulses at the contact node-pairs to the correspondirtgabpapulses on the bod-
ies,pu 2 R " via the following dual mapping

pu = G, Fu (23)

Thepy contact impulses can be included in the [EF. 21 smooth equsatibmotion
by addingp, to theC ; term to obtain

K # o #
M -G, V'-V C (+pu

L (24)
Gp 0 Po U

3.2 Assembling the system LCP

We now set up an LCP to help solve the equations of motion aadittknown
constraint forces. From EQ. 116 and Eql 23 we have

Fe=D_ ) pu=6G,D_ (25)
Thus Eq[Z4 can be recast as

M -G, -Gug'g z

. (26)
Gp 0 0 U

—

Combining this with the complementarity conditions in E§ldads to the following
NMC formulation of the LCP in Ed.]9:

0 1 2 .3 2 3
M -Gy|-G,D 0 v+ “MV- - C
. % G, 0| 0 0f 4 prz . §-va- - U tz
M - = AR lq -
DG, 0] 0 EK - 0
o Oo| E o0 0

(27)
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This is a mixed LCP problem, where the rsttwo rows are edgyaonditions, while
the lower two rows are complementarity conditions. This NMCP formulation is
essentially the one described|in [3]. It makes use of norirmahcoordinates for the
articulated system and is of sigén + ny + ny (nf + 2)). The constant and block-
diagonal structure d# results inM having a simple and highly sparse structure.
The complexity of assemblingl andq for the LCP is justO(n). Reference|]3]
derives suf cient conditions for the existence of a solatfor the LCP problem.

The solution of the EJ._27 LCP provides n&¥ velocity coordinates which
can be numerically integrated to propagate xheon guration coordinates. The
solution values of indicate which contacts are active or inactive, while thieies
of de ne the rolling or sliding state of each of the active cat$a Thus an LCP
solution with R, (i) positive indicates that thE" contact isactive Furthermore,

(i) = 0 implies that theé™ contact is arolling contactwhile a positive value
implies that it is asliding contact.

In the NMC formulation, most of the computational effort afwes solving the
LCP, while the cost of setting up the LCP is relative low. Th@imdisadvantage of
this formulation is the large size of the LCP and the conseglagge cost for solv-
ing it. Moreover, the use of non-minimal coordinates maeslée additional use of
constraint
error stabilization schemes to avoid the build up of
constraint violation errors for the bilateral constraints

We will use the dual-arm robot in Figulré 1 to track
and compare the LCP size for this formulation and the
ones to follow. This dual-arm platform has a 4 link
sensor head, a pair of 7 link arms, with each arm hav- 22
ing a 3 nger hand for an overall system with 26 links
and 26 degrees of freedom. It has no loop closure bi-
lateral constraints. Thus = 26,N = 6n = 156, and
ny = 5n = 130. For this exercise we assume that
ns = 4, and that there are 4 contact constraints. Witig. 4 Tree augmented model
these parameters, the size of the NMC LCP is 3 ez sgﬁlé?gglﬂgﬁgif;nQOd_
for the dual-arm system. The statistics for the NM '
scheme are also summarized in the rst column of Table 1 iriGei@.

4 Minimal coordinate (MC) LCP formulation

In contrast with the NMC formulation, in theinimal coordinates (MCjormu-

lation, inter-link hinges are not modeled as bilateral ¢@ists. Instead, minimal
hinge coordinates are used to parameterize the permidsifge motion. In do-
ing so, the number of coordinates associated with the hinggelnthe number of
degrees of freedom for the hinge. This approach is usedIftreahinges in a span-
ning tree for the system graph, and bilateral constrai@siaed only for additional
loop closures that may be present in the system topologyuasrdted in Figurgl4.
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Except for the switch from non-minimal to minimal coordiest the develop-
ment of the MC formulation largely parallels that for the NM@mulation. Hence
wherever possible, we reuse the earlier notation, with thdetstanding that the
meaning of each symbol depends on the formulation contéxts Bnce again, we
useN to denote the number of degrees of freedom for the tree sstiersy With

2 RN denoting the vector of hinge coordinates, the minimal coateés equa-
tions of motion for the smooth dynamics of just the tree-togy sub-system can
be expressed as

M() +C(,)=T (28)

where the con guration dependent matti4( ) 2 RN N is themass matrixof
the systemC( , ) 2 RN denotes the velocity dependent Coriolis and gyroscopic
forces vector, an@ 2 RN denotes the applied generalized forces. The mass matrix
is symmetric and positive-de nite for tree-topology syste The con guration de-
pendency and dense structureMbfmakes it clearly more complex than the sparse
structure and constant value of tMe mass matrix in the NMC formulation. On
the other hand, for the dual-arm robot system in Figurélis a compact 26-
dimensional square matrix compared with the 156-dimefiequare matrii .

Let n, denote the dimension of the bilateral constraints on théesysrising
from loop closures in the system. Sintg applies only to loop bilateral constraints,
it is much smaller thamy, in the NMC formulation. There exists G, ( ,t) 2
R" N matrix and aU(t) 2 R"» vector that de nes the velocity domain loop
closure constraint equation as follows:

Gp( ,t) =U(t) (29)

Once again we assume ti@ag ( ,t) is afull-rank matrix.

The smooth dynamics of closed-chain systems can be obtajneadifying the
tree system dynamics in Hg.]28 to include the effect of thatduibl constraints via
Lagrange multipliers 2 R"» | as follows

M() +Cl,)- Gp(,t) =T

30
Go( ,t) =U(1) )

By differentiating the bilateral constraint equation Ef, and including in the av-
erage force from the, 2 RN contact impulse, Eq_30 can be rearranged into the
following descriptor form:

meoo# " #
M- T- C+py= —
Go = CHPu= 1t here U2 Ut)- G, 2R"e
Gp 0 U
(31)
Using the discrete Euler step approximation
Yoo = (32)

the discretized version of EQ.131 takes the form
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" # " #
M -G A T-OC + ,
b = T-9 e P itn by & (33)
Gy 0 Pb U
With G, 2 R®v N sych that
vy = Gy (34)
the dual expression for the contact spatial impulses isngye
po=G, R T G,D (35)

Combining the complementarity conditions in Eql 14 with [B8.leads to the MC
formulation version of the E€] 9 LCP with

0 1
M -G,|-G,D 0
4%&, o| o of
M = A
DG, 0| 0 EK
0 0| E o0
2 .3 3 (36)
’ -M T -(T- O
4 pbz gg -Gp T - Uy %
and z—g—, q = 0 £
0

This is a mixed LCP with the top two rows correspond to equalinditions while
the lower two are complementarity conditions. Its struetisr very similar to the
NMC formulation LCP in Eq[27 and differs primarily in the uséminimal co-
ordinates. The size of the MC LCP (8l + ny + ny(n¢ + 2)). Unlike the NMC
formulation, this dimension does not depend on the numbénksg n. SinceN is
much smaller when using minimal coordinates, the MC LCP sizauch smaller
than the NMC LCP size. For the dual arm robot in Figure 1, timeedision of the
MC LCP is just 50 compared with 310 for the NCP formulation.

On the other hand, evaluating for the MC LCP requires the con guration
dependent and den& mass matrix. While the composite rigid body inertia algo-
rithm provides an ef cient way to computd [IE], the computational cost scales as
O(N?). Thus the decrease in the LCP size and solution cost for théavtulation
is traded off for an increase in the cost of setting up the L3¢ computational
complexity for the MC formulation is summarized in Table heTsolution of the
MC LCP yields the new * generalized velocity value which can be integrated to
propagate the con guration coordinates. As in the case of the NMC formialat
the bulk of the computational effort in the MC formulatiorinssetting up and solv-
ing the LCP problem.
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5 Reduced minimal coordinate (RMC) LCP formulation

Continuing with the minimal coordinate approach, we nowetéilkrther steps to
reduce the size of the LCP problem. The matrix on the left ofHcan be inverted
to yield the following solution for :

2 MMT- C+py= 4] (372)
= GM G, (- G+ ) @)

|
TeMle, B L Mmle, GoMT G, TGy

f

+M G, GoM G, ‘U (37¢)

Using Eq[32, we obtain

n @ . +r;t .
|
@ -y - M6, GM G, "Gy
)
+M G, GyM G, " U
BB vp, + X
where
Y ML MG, (GoM 1G,) TepM  T2R N (39)
and X £ -~ +Y(T- 0 (+M G, GoM G, ‘U 2RV
Thus
pv, #pc, "D g,YyGD +D G,X (40)

Using this allows us to eliminate” andpy from the MC LCP formulation in EQ. 36
to obtain the followingReduced Minimal Coordinate (RM&rmulation LCP:
N "# " #
4: D Gy I Gu D E 7 é o q Gy X
E o’ ’

s
O

M (41)

Since there are no equality conditions, this is a standdhérahan a mixed LCP.
The size of this RMC LCP is, (ns + 2). It is notable that the size of the LCP
does not depend on the number of linksthe number of degrees of freeddwh
nor then, dimension of the bilateral constraints. It only depends twnrtumber
of contact constraint nodes. Thus the dimension of this L8ven smaller than
that for the MC formulation. For the dual arm robot systene, dimension of the
LCP is 24. On the other hand, computilp for the RMC LCP requires th¥ ma-
trix in Eq.[39, which requires the con guration dependsfit * matrix and several
expensive matrix/matrix products. These computatione&@(N3) computational
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complexity. Once again, while the RMC formulation succekgfreduces the LCP
size and consequently its solution cost, this reductiorcé®panied by a signif-
icant increase in the cost of setting up the LCP. The comioui@tcomplexity for
the RMC formulation is summarized in Taljle 1.

In contrast with the NMC and MC formulations, the solutiontiof RMC LCP
does not by itself yield the new system velocity or statetdad the following se-
quence of steps is needed to obtain the new state values:

1. Assemble and solve the RMC LCP in [Eg] 41 to obtaiand . Use in Eq.[3%
to obtain thep, contact impulse vector. n n

2. Usep, in Eq.[38 to compute the new system velocity. This can be integrated
to obtain the new system con guration coordinates

Thus, the RMC LCP by itself does not do all the work, and thatamwl step (2) is
needed to complete the computation of the néwsystem velocity coordinates.

The formulation developed by Trinklel[2] is a hybrid comtipa of the NMC
and RMC formulations. Trinkle's setup allows the use of gaheoordinates for de-
scribing the smooth equations of motion. However, instdadiminating the hinge
bilateral constraints by using minimal hinge coordinatgmi of symmetric (pos-
itive and negative) complementarity conditions are addedrnforce the equality
condition for each hinge constraint. This in ates the siz¢he LCP much like the
NMC approach. However, Trinkle;s approach is similar toRMC in eliminating
the velocity coordinates and the loop closure bilaterakt@int Lagrange multipli-
ers from the LCP problem to obtain an LCP similar in form to [Ef.

6 Operational space (OS) LCP formulation

So far we have found that the reductions in LCP size have tleeedfect of increas-
ing the LCP setup cost. In this section we look into reducimghssetup cost using
low-order structure-based dynamics algorithms. Using

CEMIT-G and [ E M T Q- U=Gy - U (42)

in Eq.[31, we obtain
0@, -U
ki -1 _ T
2 GyM [T- C+G, +py=+]-U
GoM G, +G,M p,= (+ |
GoM Gy +GyM 'G,D = (+ |

(43)

I8

The above expression characterizes the equality conditidhe dynamics from the
bilateral constraints. Observe that represents the generalized acceleration that
would occur in the absence of the bilateral and contact cainss, and can be re-



Contact Dynamics Formulation Using Minimal Coordinates 15

garded as theegeneralized acceleration for the system. For this hypizididtee
system, [ represents the time derivative of the velocity resid@gl - U( t) for
the bilateral constraints. Forconsistent with the constraints, clearly this velocity
residual is instantaneously zero, but it has theron-zero time derivative were the
system dynamics to evolve according to the free dynamicseatity, the system
dynamics is constrained and this velocity residual andirite tderivative remain
zero.

The relative linear acceleration of the contact nodes iginbd by differentiating

Eq.[33 to obtain

Vu = Gu""'Gu @ GuM_l[T' C+ Gb + py= t]+Gu (44)

With
T2 GM X T- Q+ Gy, =G, 1+ Gy (45)

the discretized approximatiqw;, - v ) = v,  of Eq.[44 leads to

v, BEBe M 16, (+GM IG,D +v, + | (46)

u
Physically, |, is the time derivative of the contact relative velocity were the
system to evolve in accordance with the free dynamics,i.the absence of the bi-

lateral and contact constraints. Combining the compleargpiconditions in EJ_1l4
with Eq.[43 and EJ._46 yields the following mixed LCP for thetgm:

GoM G, GyM 'G,D [0
M £ 8D GuM G, D G,M G,D|E
0 E 0
2 3 2 f 3 (47)
Pb. . bt
andz=97g, q=4D (v; + | t)%
0

This M matrix still requires the con guration dependevit * matrix whose eval-
uation if of O(N3) computational complexity. We next look more closely at the
structure of thes, andGy, matrices.

The unilateral and bilateral constraints are associated modes on the bod-
ies. Let us denote the number of this overall set of nodeshiadoin the unilat-
eral and bilateral constraints ag. Denoting the spatial velocities of these nodes
by the stacked vectov, 2 R ¢, there exist matrice, 2 R3¢ 6"c and
Q, 2 R 8nc gych that the unilateral and bilateral velocity constrampations
can be expresse(fas

Vg = QV:, and @V, =U (48)

4Qy has the same structure as would @ constraint mapping matrix corresponding to bilateral
constraints involving three degree of freedom sphericaldsng
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LetJ 2 R6"c N denote the Jacobian for the constraint nodes, so that
Ve=J (49)

It follows from Eq[29, Eq_34, E{. 48 and Hqgl49 tat andG,, have the following
form:

G, =QJ and Gp=QyJ (50)
With
2 MLy 2R6ne e (51)
we can use E@. 50 to re-expredsin Eq.[4T as
0 % % Q.D 01 0" % # 0 1
M= B — T 8 =B f[QniQuQ]"g
=@ Q_Q DQ_QD EAS= D Q E
0 E 0 0 E |0
(52)
The = JM- 1] matrix de nition in Eq.[5] is precisely the mathematical ex-

pression for the inverse of thaperational space inertianatrix that is used in the
operational space approach for robot manipulation and«xbﬂﬂ,]. Based on
this structural similarity, we borrow and extend the operal space terminology to
our current context with the constraint nodes forming therapional space nodes.
Also, borrowing terminology, we refer to as theoperational space compliance
matrix (OSCM)matrix. The invertibility of _ does not depend ahbeing invertible

— only thatd have full row-rank. When it exists, the inverse ofis referred to as
'ﬁ?j:operational space inertiarhe properties of the OSCM are discussed in detail in

].

The property of the matrix that is of importance for us is the availability of al-
gorithms ofO(N)+ O(n2) computational complexity for evaluating [12,[16]. The
low-order of these algorithms is remarkable given the presefM- ! in the ex-
pression for_, since evaluating! andM - * individually requireO(N?) andO(N?3)
computations respectively. This algorithm reduces thepdexity of evaluatingvi
in Eq.[52 fromO(N?) to the much smalle©(N) + O(n?2) computational com-
plexity. The low complexity algorithm for evaluating is based on an analytical
transformation of Ed._31, followed by a disjoint decompiositof the matrix into
block diagonal, and upper and lower triangular componérds d¢an be computed
recursively. A summary of this structure-based analysis @acompanying algo-
rithms using spatial operator techniques is describeddmfipendix. An alternative
sparsity based technique for evaluatings described in referencﬂl?].

Using Eq[52 the Eq.47 LCP can be re-expressed as the fotjo@perational
Space (OShormulation LCP:
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0" o # 01
0 E I
2 3 2 f 3 (53)
Po b t
and zég;%, qégQ(VML t)%
0

This is a mixed LCP, with the rst row corresponding to an elifyaondition while
the bottom two rows correspond to complementarity conatiolrhe size of this
LCPis(ny + ny(ns + 2)). Like the RMC formulation, the size of this LCP does
not depend on the number of linksor the number of degrees of freeddwn but
it does depend on the, dimension of the loop closure bilateral constraints. The
dimension of the OS LCP is moderately larger than the RMC L@Fsialler than
the MC LCP. TypicallyQ,, Q, andU are all zero leading to a simplgrin Eq.[53.
For the dual arm robot system, the dimension of the OS LCP.is 24

ComputingM for the OS LCP requires the con guration dependenmatrix
Eq.[53 whose evaluation is @(N) + O(n?2) computational complexity which is
much smaller than th©(N?3) complexity for evaluatingl for the RMC method.
Thus in comparison with the RMC formulation, while the OSiaitation increases
the size of the LCP by a modes , it drastically reduces the LCP setup complexity.
The result is a signi cant reduction in the overall comptgof the contact dynam-
ics computations for the OS formulation.

Like the RMC formulations, the solution of the LCP does noitsglf yield the
new system velocity or state. Instead the following seqaecsteps is needed to
obtain the new state values:

1. Assemble and solve the OS LCP in Eg. 53 to obpgin and .Use inEq.[3%
to obtain thep, contact impulse vector. a -

2. Use = pp=  andp, in Eq.[3] to obtain and integrate thegeneralized
acceleration over the; time interval usingany smooth integrator to obtain the
new system statg , ).

Like the RMC formulation, the LCP by itself does not do all therk in the OS for-
mulation, but instead the additional step (2) is needed toptete the computation
of the new * system velocity coordinates.

The LCP formulation developed in referendaSIE, 18] makentisee divide and
conquer algorithm (DCAHE] techniques and is a special case of the OS formula-
tion. Our OS formulation is more general since it handlepldosure bilateral con-
straints, exploits operational space techniques to redogutational complexity,
and as described later, handles collision dynamics.

Table[1 summarizes the dimensions and computational caitypfer all the for-
mulations discussed so far. The trend across the NMC, MC an@ Rrmulations
is that the reduction in the size of the LCP shifts costs tolii® setup process.
While the initial form of the OS formulation LCP in EQ. 47 alsalbws this trend,
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LCP Formulation
Property NMC MC RMC oS
tc):/;(érdinates Non-minimal Minimal Minimal Minimal
tggplgf;;mb'y o) O(N?) O(N%) [o(N)+ O(n2)
LCP dimension ﬁrl (:]f Ebz) * Eu (t” rlbz) * ng(ng + 2) g)b *hu(nes
(';‘éqaéfsrgn LCP 310 50 24 24
oy o Nove | None|Evabatep. | Evaatep,

Table 1 A comparison of the features of the different NMC, MC, RMC anddd8ulations for
contact and collision dynamics. The LCP dimension size is fordfegence dual-arm robot prob-
lem, while the LCP assembly complexity highlights just the nwgotributors.

the restructured Eq._53 LCP breaks the pattern by restingttihe LCP to take
advantage of low-order, structure-based algorithms f@IQB8CM.

7 Collision dynamics

In this section we develop extensions to the OS LCP formanafdor handling the
dynamics of collision events. During inelastic collisiopame of the impact en-
ergy is lost. Thecoef cient of restitution (i) de nes the fraction that remains after
a collision. The complementarity approach to modelingisiolhs breaks up the
collision event into a pair of instantaneocempressioranddecompressiophases
[E]. During the compression phase, the collision impulsstised, and during de-
compression, a fraction of the collision impulse is recedeMe will make use of
time discretized equations with impulses developed fotaxrdynamics, but with
+ = 0 since collision events are assumed to be instantaneous.

7.1 Compression

Atthei™ contact undergoing collision, the compression phase fantsneous and
impulsively changes the relative linear contact velocigniv;, (i) to a newv{ (i)
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value with a non-negative normal component. The compressipulse is denoted
pc(i). The mixed LCP problem for the compression phase is obtdiyesktting
¢ = 0in Eq[53 to obtain

0 0 1
w=Mz+q? z with q 2 @D v, A (54)
0

The LCP solution is used to instantaneously (i.e. impulg)veropagate the state
for the compression phase as follows:
Pc = Qu Qi + Qb Po
c= -+ M 1 p. (55)

ve =J°¢

7.2 Decompression

The decompression phase applies an additional impulse giiitoae
()0, A (i)pc(i)] for thei™ contact along the normal from the impulse stored
during the compression phase. The recovérddcompression impulse is

# 2 colf( (N[0, A (Npe(i) Ay, 2R (56)

The decompression LCP is obtained by updating[Eh. 43 andZttp ihclude the
additional# impulse. This leads to a decompression LCP problem thaeisiked
LCP in Eq[58 with ¢ = 0, the contact linear velocity, replaced withv{ , and

an additional DQDQU __Q, #term for the recovered impulse included in theCP
vector term. The resulting decompression phase LCP is
0 1
4 0 + Q#
w=Mz+q ? z with q = @D DQ —wW"A (57)
0

The LCP solution for the decompression impulse can incluttiitianal contact
impulse terms that ensure that the normal component of tatvelinear velocity
at the end of the decompression step remains non-negatiaeL TP solution is
used to instantaneously propagate the state for the deessipn phase as follows:

p=QD_+Q +Q#

58
+:C+M-1Jp ( )
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When (i) = 0, the collision is completely inelastic, and there is noaepression
phase. However, in general, each collision event requiresaolution of two LCP's
in this approach.

8 Simulation results

We use a simulation of a multi-link pendulum colliding witseélf and the environ-
ment to quantitatively evaluate the performance of the O®fitation. This exam-
ple also allows us to parameterically measure the perfoceédmprovement as a
function of the problem dimension by varying the number okdi in the pendulum.
The environment consists of a oor and a wall located 4m awag multi-link pen-
dulum consists ofh identical 1kg mass spherical bodies connected with pinggng
The radius of the sphere is scaled based on the number oftbnkaintain a 12m
overall length of the pendulum. The pendulum base is locatedheight of 10m.
The open source Bullet softwalEtZO] is used for collisiotedgon, and the PATH
software [Ell] for solving mixed complementarity problenibe simulation uses a
time step of 1ms, with a 0.5 coef cient of friction and a 0.5efagient of restitution
to simulate inelastic collisions. The pendulum starts aragle of = 4 radians with
an initial angular velocity of 1 radian/s and a gravitatiomeceleration of 9.8mfs
As the pendulum swings from left to right, it collides withetiground, bounces

Fig. 5 Time series capture of swinging pendulum simulation with 12 links

off of the ground, and eventually collides with the wall oe tiight. In the course of



Contact Dynamics Formulation Using Minimal Coordinates 21

the sequence, multiple links are at times in collision witl ground, the wall and
with each other. Figure 5 contains a sequence of screenfstistsuch a simulation
for a 12-link pendulum. We have simulated this contact arlisamn dynamics sce-
nario using two different techniques. The rst techniquéhie minimal coordinate
OS formulation described in Section 6.

The second technique, that we refer to asMC/OS formulationis a non-
minimal coordinate variant of the OS formulation. Similarthe NMC method,
each link is treated as an independent body, and the hingdsaadled as bilateral
constraints between the neighboring links with = 6n - N. The NMC/OS LCP
has the same form as the OS LCP in Eq. 53, except that the OS@i ison-
minimal coordinate = JM~ 1J , instead of Eq. 51. The NMC/OS is a much
larger matrix than for the OS formulation, but has a much s&mbplock diagonal
structure. However, the NMC/OS LCP does not include systelocity coordinates
V in z and thus is smaller than the NMC LCP.

Figure 6 shows example plots of the height and normal veladithe last link
of the 12-body pendulum from the two simulation methods. Shmeulation re-
sults from the two methods show good agreement through thtefev collisions,
with some divergence during the later phases. Reasonsdatitiergence include
the widely differing choices of coordinates, and more int@otly the The verti-
cal spikes in the velocity plot are discontinuous jumps froaflisions involving
the pendulum bodies. The small trajectory differences énglots decrease further
when the time step size is reduced.

Fig. 6 Comparisons of the height and normal velocity of the last link gishe OS (red) and
NMC/OS (blue) formulation based simulations for a 12-body pand.

Table 2 compares the computational cost of the OS and the RI8Gdrmula-
tions for pendulums with the number of links varying betw8&esnd 30 links. The
table also lists the LCP size for the OS, NMC/OS and the NM@fdations. The
size of the LCP remains a constant value of 24 for the stard&rtbrmulation even
when the number of links and degrees of freedom in the systémaiieased. In con-
trast, the LCP size increases with the increase in the nuoflérks and degrees
of freedom for the NMC/OS and the NMC formulations. We alssae that the
OS method is about 3.5 times faster for the 3 link pendulure,casd over 50 times
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LCP size Computation Time (s)
Number of links [[OS|[NMC/OS|NMC || OS NMC/OS Speed uf
3 24| 39 57 ||0.63 2.20 35
6 24 54 90 || 1.0 4.44 4.44
12 24| 84 156 {|1.88 15.7 8.36
15 24 99 189 (|2.91 33.59 115
24 24| 144 | 288 ||4.76 127.94 26.88
30 24| 174 | 354/5.13 257.72 50.28

Table 2 A comparison of the LCP size and computational time for the OS a@/0S formu-
lations for the multi-link pendulum example with differenimber of links. The LCP size assumes
4 contacts andh; = 4. The three LCP size columns are for the OS, the NMC/OS and the NMC
formulations. The speed up value is the ratio of the NMC/OS td@Bdormulation simulation
times.

faster for the 30 link pendulum when compared with the the N®Emethod. The
performance gap widens substantially as the number of limkke system is in-
creased. The performance gap between the OS and NMC foromdatill be even
greater due to the even larger size of the NMC LCP.

9 Conclusions

In this article we have described a progressive series ofdtations for solving
the contact and collision dynamics of multi-link articidtsystems with the goal
of reducing computational cost. Along the way, we have @drthe relationships
among the different approaches and those in the litera@we strategy has been
to use minimal coordinates and identify formulations thegtlexploit the available
low-order structure based dynamics algorithms to redue@tlerall computational
cost.

The formulations studied here vary in the size of the LCP,dbst of setting
up the LCP, and the ancillary dynamics steps needed to coenffle dynamics
solution. The generally observed trend is that the redndtiche LCP size shifts
the computational burden from solving the LCP problem, ® gbtting up of the
LCP problem. The widely used NMC non-minimal coordinateriatation is the
simplest and cheapest to set up, but also the most expemss@\e due to its
large dimension. The RMC minimal coordinate approach ondter hand has
the smallest LCP dimension, but one that is the most experneiset up. In the
RMC approach, the size of the LCP problem inis jisg (ns+ + 2) + ny), which
is independent of the number of links, the number of degrédéeedom and the
dimension of the bilateral constraints on the system. Intresh the size of the
corresponding NMC LCP is larger byn6- N. For a 6-link manipulator with 6
degrees of freedom, this amounts to an increase in dimep§@h.

The OS formulation also has the small LCP dimension propeitit dimension
exceeding that of the RMC LCP by just the (typically smalthénsion of the loop
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closure bilateral constraints,, . The advantage of the OS formulation is that the
LCP matrix can be expressed in terms of the operational sp&@M matrix for
the constraint nodes. This form allows us to use low-ordaurctire-based compu-
tational algorithms available for the OSCM to signi cantlduce the cost of setting
up the OS LCP. Consequently the OS formulation has the lomestll cost with

a small LCP as well as low cost algorithms for setting up th&LEbcusing on this
option, we describe extensions of the contact dynamicsutation to handle elastic
and inelastic collision dynamics. The OS formulation's n§eninimal coordinates
also results in the automatic enforcement of the interiimige bilateral constraints
and avoids the need for additional bilateral constrainbrecontrol schemes. The
benchmark simulations using a pendulum system show a wigemérformance
improvement using the OS formulation as the number of bodiéscreased. For
the 30 link pendulum system, the OS formulation is over 5@érfaster than the
NMC/OS approach. An area of future work is the extension ef@$ formulation
to use the more accurate nonlinear complementarity probdelmiques, and time
stepping schemes that are in development for increasinglhestness and accuracy
of contact and collision non-smooth dynamics [22].
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10 Appendix

The operational space for the multi-link system is de nedtsycon guration of the
set of constraint nodes on the system. The key implementatio computational
challenge for setting up the OS formulation LCP in Eq. 53 ésriked for evaluating
the _ matrix. As seen in Eq. 51, involves the con guration dependent matrix
products of the Jacobian matrix and the mass matrix invérsirect evaluation of
this expression requiréd(N®) computations. However references [12, 16, 23] have
used spatial operators to develop simpler and recursivepotational algorithms
for __that are of onlyO(N) complexity. We brie y describe the underlying analysis
and structure of this algorithm, and refer the reader to 16223] for notation and
derivation details.
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10.1 Spatial operator factorization df1 - *

We begin with the following key spatial operator based atiey results that pro-
vide explicit, closed-form expressions for the factoii@atand inversion of a tree
mass matrix [12, 24]:

M=HM H

M=Jl+H KID[l+ H K]
[+H KI''=[l-H K]

M I=[I-H K] D I- H K]

(59)

The rst expression de nes the Newton-Euler operator faizttion of the mass
matrix M in terms of theH hinge articulation, the rigid body propagation and
theM link spatial inertia operators. While this factorizatiorshreon-square factors,
the second expression describes an alternative factorziavolving only square
factors with block diagondD and block lower-triangulgl + H K] matrices. This
factorization involves new spatial operators that are ciaged with thearticulated
body (AB)orward dynamics algorithm [11, 23] for the system. The rexfiression
describes an analytical expression for the inverse ofitheH K] operator. Using
this leads to the nal analytical expression for the investhe mass matrix. These
operator expressions hold generally for tree-topologyesys irrespective of the
number of bodies, the types of hinges, the speci ¢ topolalgitructure, and even
for non-rigid links [12].

10.2 The extended operational space compliance matrix

With V 2 R® denoting the stacked vector of link spatial velocities,sipgtial
operator expression is [12]
V= H (60)

Bundling together the rigid body transformations for aldee we de ne theB 2
R6" 6nc pick-offmatrix such that the stacked vector of node spatial veksiti
can be expressed as

60

Ve=BV & 9

B H )y JZ B H (61)

This is the spatial operator expression for h#acobian matrix. Using this expres-
sion and Eq. 59 for the mass matrix inverse within Eq. 51 ldadke following
expression for :

2 aM Y B OH@O-HKDYN-HKHB (62)

Using the spatial operator identity [12, 24]
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(I-H K)H =H (63)
in Eq. 62 leads to the following simpler expression far
=B Bwith % HDH 2R6: & (64)

We have arrived at an expression for that unlike Eqg. 51, involves neither the
mass matrix inverse nor the node's Jacobian matrix! We tefer as theextended
operational space compliance matrikhis terminology is based on Eq. 64 which
shows that the OSCM, can be obtained by a reducing transformation of the full,
all body matrix by theB pick-off operator involving just the matrix sub-blocks
associated with the parent links of the nodes. From its d®nij it is clear that

is a symmetric and positive semi-de nite sinbe ! is a symmetric positive-de nite
matrix.

While the explicit computation o1~ ! or J is not needed to obtain, the di-
rect evaluation of Eq. 64 still remains @(N3) complexity due to the need for
carrying out the multiple matrix/matrix products. The nsg&ttion shows that these
matrix/matrix products can be avoided by exploiting a degosition of the ma-
trix.

10.3 Decomposition of

The following lemma describes a decomposition oihto simpler component terms
and an expression for its block elements. Bheand () terms used below are
de ned in references [12, 23]. Furthermo}ék) denotes the parent link for the"
link, andi  j notation implies that thg" link is an ancestor of thé" link in the
tree.

Lemma 1. Decomposition of
can be decomposed into the following disjoint sum:
- - s X _ .
= + + + R where R = e (ki)Y(k) (ki)g
8i,j:i j
k=}(ij)
(65)
2 R6 61¢ s a block-diagonal operator, referred to as the operatibspace
compliance kernel, satisfying the following backward Ly equation:

HD H= - diagOf E E (66)

diagOf E E  represents just the block-diagonal part of the (generalby n

block-diagonal)E E matrix. The6 6 dimensional, symmetric, positive semi-
de nite (k) diagonal matrices satisfy the following parent/child resive rela-
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tionship:
(K= (KK GK) (GK),k)+H (KD H(KH(K) (67)

This relationship forms the basis for the followi@fN) base-to-tips scatter recur-
sion for computing the (k) diagonal elements:

8
> for all nodesk (base-to-tips scatter)

> W= 0Kk GK) GK),K+H KD H(KH(K) (68)

" end loop

While de nes the block-diagonal elements of the following recursive expres-
sions describe its off-diagonal terms:

(i) fori = j

Ly = (i,k) (k,j) fori k j, k=}()

(|,J)— 3 (j,l) fori J (69)
(i,k) (k,j) fori . j i, k=1}(i))

Proof. See [12, 23].

Eqg. 65 shows that can be decomposed into the sum of simpler terms consisting

of the block diagonal , the upper-triangular  , the lower triangular , and

the spars&® matrices. Furthermore, Eq. 69 reveals that all of the bleleknents of
(i,j) can be obtained from the(i) elements of the block-diagonal operational

space compliance kernel.

Fromthe = B B expression, and the sparse structur@oft is clear that
only a subset of the elements ofare needed to compute TheB pick-off operator
has one column for each of the nodes, with each such colurmindhanly a single
non-zero 6 6 matrix entry at thek™ parent link slot. Only as many elements
of as there are elements inare needed. Thus, just, n; number of 6 6
sub-block matrices of are required. In view of the symmetry of the matrices, we
actually need jush¢(n. + 1)=2 such sub-block matrices. The overall complexity
of this algorithm is linearly proportional to the number afgees of freedom, and
a quadratic function of the number of nodes. This is much tahan theO(N?)
complexity implied by Eq. 51.



